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Abstract

Information retrieval systems consist of many complicated components. Research and development of such systems is
often hampered by the difficulty in evaluating how each particular component would behave across multiple systems.
We present a novel hybrid information retrieval system—the Query, Cluster, Summarize (QCS) system—which is
portable, modular, and permits experimentation with different instantiations of each of the constituent text analysis
components. Most importantly, the combination of the three types of components methods in the QCS design
improves retrievals by providing users more focused information organized by topic.

We demonstrate the improved performance by a series of experiments using standard test sets from the Document
Understanding Conferences (DUC) along with the best known automatic metric for summarization system evaluation,
ROUGE. Although the DUC data and evaluations were originally designed to test multidocument summarization, we
developed a framework to extend it to the task of evaluation for each of the three components: query, clustering, and
summarization. Under this framework, we then demonstrate that the QCS system (end-to-end) achieves performance
as good as or better than the best summarization engines.

Given a query, QCS retrieves relevant documents, separates the retrieved documents into topic clusters, and creates
a single summary for each cluster. In the current implementation, Latent Semantic Indexing is used for retrieval,
generalized spherical k-means is used for the document clustering, and a method coupling sentence “trimming,” and
a hidden Markov model, followed by a pivoted QR decomposition, is used to create a single extract summary for
each cluster. The user interface is designed to provide access to detailed information in a compact and useful format.

Our system demonstrates the feasibility of assembling an effective IR system from existing software libraries, the
usefulness of the modularity of the design, and the value of this particular combination of modules.
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1. Introduction

Information retrieval (IR) systems provide users with a vast amount of reference material. Along with
this tremendous access comes the challenge of effectively presenting the user with relevant information in
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response to a query. When using an IR engine to search through electronic resources, simple queries often
return too many documents, including many that are not relevant to the intended search. For instance,
there are several million documents on the World Wide Web pertaining to “Michael Jordan.” Most of these
concern the basketball star, so it is difficult to find information about the television personality, the jazz
musician, the mathematician, or the many others who share that name. It would be useful to have a system
that could overcome this limitation.

One approach is to cluster the documents after retrieval and present a synopsis of each cluster so that a
user can choose clusters of interest. This is the motivation for our Query, Cluster, Summarize (QCS) system,
which performs the following tasks in response to a query:
• retrieves relevant documents,
• separates the retrieved documents into clusters by topic, and
• creates a summary for each cluster.
Our implementation of the QCS system partitions the code into portable modules, making it easy to exper-
iment with different methods for handling the three main tasks listed above. In our current implementation
of the QCS system, we use existing software libraries for each task. Throughout this paper, we discuss our
choices for each of the modules used, but note that it is possible to exchange individual modules with other
existing methods.

Previous work on using a combination of clustering and summarization to improve IR is summarized in
Radev et al. (2001b). Of existing IR systems employing this combination, QCS most resembles the News-
InEssence system (Radev et al., 2001a) in that both systems can produce multidocument summaries from
document sets clustered by topic. However, NewsInEssence is designed for IR from HTML-linked document
sets while QCS has been designed for IR from generic document sets.

Another system that leverages clustering and summarization for information organization similarly to
QCS is the Columbia Newsblaster system (McKeown et al., 2002). Newsblaster, like NewsInEssence, is a
web-based system which crawls news websites and then clusters and summarizes the news stories, but it does
not currently accept queries. Recently, the value of summarization to users in IR has been demonstrated
by Maña-López et al. (2004), whose study showed increases in user recall of retrieved information when
clustering and summarization were included in the output of the IR system.

We have used QCS for information retrieval in two information domains: newswire documents from the
2002–2004 Document Understanding Conferences (DUC) and biomedical abstracts from the U.S. National
Library of Medicine’s MEDLINE database. (See Dunlavy et al. (2003a) for a description of the use of the
MEDLINE documents in QCS.)

In Section 2, we discuss our choices for each of the components of the QCS system. An example of use of
the QCS system is presented in Section 3. Section 4 presents results of experiments evaluating some of the
components of the implementation, and we conclude in Section 5.

2. The QCS System

QCS is a collection of software modules developed in the languages C and C++ and tested under the
operating systems SunOS 5.8 (Solaris 8) and Linux (kernel v2.4). Preprocessing tools for all QCS data,
including processing of the data passed from one module to another were developed in the Perl language.
QCS has been developed as a client-server application, and the implementation took approximately 6 person-
months of full-time effort.

In this section we describe the components of our system: document preprocessing, the representation of
documents and queries, and the querying, clustering, and summarization of documents. Table 1 presents a
summary of the software libraries and packages used in implementing QCS v1.0.

2.1. Document Preprocessing

In preprocessing a document set for use with QCS, we
• convert the documents to a standardized format,
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Table 1
Implementation details of QCS v1.0.

Task Implementation Language

Document Preprocessing

SGML conversion HTML-Parser 3.27a Perl

POS tagging/sentence detection LT TTT 1.0b compiled library

stype tagging sTag (QCS) Perl

Term parsing/indexing/SVD GTP 3.0c C++

QCS Modules

Querying GTPQUERY 3.0c C++

Clustering GMEANS 2.0d C++

Summarizing HMM+QRe C (from Matlab)

Sentence Trimmerf Perl

QCS Interface

Java Server TOMCAT 4.1.12g C++

QCS Client QCS 1.0 Java

References: aAas and Chase (2003); bMikheev (2000); cGiles et al. (2003); dDhillon et al. (2002); eConroy and O’Leary (2001);
fConroy et al. (2004); gApache Software Foundation (2003)

• determine the parts of speech of all words,
• detect and mark the sentence boundaries,
• classify sentences by their content, and
• develop a compact representation for the document information.

This information can be computed once and stored for use by any of the QCS modules.
If not already in SGML format, documents are converted into SGML-encoded documents, with start and

end tags around each part of the text. For example, the tags <DOC> and </DOC> are placed at the
beginning and end of each document.

Determining the parts of speech for document terms and sentence boundary detection is performed pri-
marily using a probabilistic part-of-speech tagger and sentence splitter based on a combination of hidden
Markov and maximum entropy models (Mikheev, 2000). The default models, trained on the Brown corpus
(Francis and Kucera, 1982), are used in the current implementation of QCS. This method was chosen due to
its ability to handle the two most crucial preprocessing tasks required by the QCS system without modifica-
tions and for its proven performance in performing part-of-speech tagging and sentence boundary detection
(Mikheev, 2000).

An important part of preprocessing the data for use in the summarization module of QCS is assessing
the value of the content of each sentence based on the role of that sentence in the document. Thus we tag
each sentence as a candidate for extract summaries (stype = 1), not a candidate but possibly containing
useful key terms or phrases (stype = 0), or containing no useful information (stype = −1). Table 2 shows
the mapping of SGML tags to stype values of 0 and 1. All other tags, e.g., <DOCNO>, <AUTHOR>, etc.,
have stype = −1. Note that the choice for these mappings is heuristic—based on our manual inspection
of several documents of each type—and may need to be amended for other document sets. The complete
set of SGML tags for each type of document is defined using a document type definition (DTD) file. The
name of the DTD file associated with each file type is also listed in Table 2. The DUC documents already
contain the SGML tags needed by QCS, but Medline documents are not SGML-encoded, and a separate
preprocessing step is required to map Medline fields to SGML encoded text (the field names are used as
the SGML tag names in QCS). A generic document type is also used for all other documents that are not
originally SGML-encoded. An additional preprocessing step for such documents is required for mapping at
least one sentence to stype = 1 (using the SGML tag <TEXT>) and one to stype = 0 (using the SGML
tag <SUBJECT>)—at least one sentence of each stype is required by the current summarization module
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Table 2
Mapping of SGML tags to stype values in QCS.

Document Type (DTD filename) SGML Tag stype

Generic <TEXT> 1

<SUBJECT> 0

Acquaint (acquaint.dtd) <TEXT> 1

<HEADLINE> 0

Associated Press (ap.dtd) <TEXT> 1

<HEAD> 0

San Jose Mercury News (sjmn.dtd) <TEXT>, <LEADPARA> 1

<CAPTION>, <DESCRIPT>, <HEADLINE>,
<MEMO>

0

Los Angeles Times (latimes.dtd) <TEXT> 1

<HEADLINE>, <SUBJECT>, <GRAPHIC> 0

Federal Register (fr.dtd) <TEXT>, <SUMMARY>, <SUPPLEM>,
<FOOTNOTE>

1

<DOCTITLE> 0

Foreign Broadcast Information Service (fbis.dtd) <TEXT> 1

<TI>, <H1>, . . ., <H8> 0

Medline <ABSTRACT> 1

<TITLE> 0

Wall Street Journal (wsj.dtd) <TEXT>, <LP> 1

<HL> 0

Financial Times (ft.dtd) <TEXT> 1

<HEADLINE> 0

in QCS.
Choosing to embed information (i.e., the stype of each sentence) in the document itself instead of creating a

processing module in the summarization algorithm allows for the flexibility of using the information through-
out the various stages of the QCS system. It also enables expansion of the types of sentence classification
without affecting the implementation of the summarization module.

Currently, QCS uses a vector space model (Salton, 1989) for document representation in the querying,
clustering, and summarization modules. In such a model, a set of m documents containing n distinct terms
can be represented by an m×n term-document matrix A. Terms in QCS are all the (white space delimited)
words in a document with the exception of a pre-designated list of stop words. The list of stop words
currently used in QCS is the one provided with the implementation of the query module.

The value of an entry of the matrix A is a product of three scaling terms:

aij = τij · γi · δj (i = 1, ...,m; j = 1, ..., n) (1)

where τij , γi, and δj , are the local weight, global weight, and normalization factor, respectively. These param-
eters are chosen so that the value aij best represents the importance (or weight) of term i in document j for
a particular document set. The jth column of A, aj , is the feature vector for document j. The various scaling
options for a term-document matrix in QCS are presented in Table 3. The values fij and fi are the number
of times term i appears in document j and the number of times term i appears in the entire document col-
lection, respectively. The local binary weighting is used when it is important whether or not a term appears
in a document (as is the case with a document set with very little overlap in terms across the document set),
whereas the log weighting would be used to damp the effects of large differences in term frequencies within
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Table 3
Scaling factors for a term-document matrix

Local Weights (τij)

Term Frequency fij

Binary χ(fij) =











0 fij = 0

1 fij > 0

Log log(fij + 1)

Global Weights (γi)

None 1

Normalized
(
∑

i
f2

ij

)−1/2

Inverse Document Frequency (IDF) log

(

n/
∑

j
χ(fij)

)

IDF Squared(IDF2) log

(

n/
∑

j
(χ(fij))

2

)

Entropy 1 −

∑

j

(

fij/
∑

k
fik

)

log

(

fij/
∑

k
fik

)

log n

Normalization (δj)

None 1

Normalized
(
∑

i
(τijγi)

2
)−1/2

a single document. Global weighting reduces the weight of terms that occur frequently within a document
or across several documents while giving a greater weight to terms that occur infrequently. See, for example,
Kolda and O’Leary (1998) for more information. Finally, the normalization factor is used to remove any bias
based on document size by scaling each document feature vector to unit length in the Euclidean norm. This
standard tf.idf (term frequency, inverse document frequency) scheme, along with normalization, is used in
the examples presented in this paper.

The indexing of the terms and documents is performed in QCS using the General Text Parser (GTP) (Giles
et al., 2003). GTP was chosen for use in QCS since it includes tools for parsing documents and representing
them in a vector space model along with a retrieval tool that is currently used in the querying module.
Minor changes were necessary to provide an interface to the term-document matrix consistent with that
needed by the clustering module.

Currently, the indexing is done “offline”; it is performed once as a preprocessing step for a static document
set or during system downtime for a dynamic set. The reason for this is that the parsing and indexing are
too computationally expensive to be done in real-time.

2.2. Querying Documents

The method used for query-based document retrieval in QCS is Latent Semantic Indexing (LSI) (Deer-
wester et al., 1990). LSI attempts to reveal latent relationships caused by term ambiguity, while preserving
the most characteristic features of each document. It does this by approximating the matrix A by a rank-p
matrix Ap computed using a singular value decomposition (SVD) of A.

We represent a query using a query vector q, with m components, just as a document can be represented
by a feature vector. A query vector is typically much more sparse than a feature vector (since it contains far
fewer terms than an average document) and does not necessarily use the same scaling scheme. For comparing
query vectors and document vectors in LSI, the query vector is projected into the p-dimensional subspace
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spanned by the columns of Ap, and we denote the projected vector as qp.
The relevance of a document to a query is measured by the cosine similarity score, s, between qp and the

column of Ap corresponding to that document. For example, the relevance of document j to the query is
computed as

sj =
qT
p (ap)j

‖qp‖ ‖(ap)j‖
, (2)

where (ap)j is the jth column of Ap. Note that 0 ≤ sj ≤ 1.
The querying module in QCS is called GTPQUERY and is part of the GTP system. GTPQUERY parses the

query (using the method used to parse the document set), normalizes the resulting vector, and calculates
the cosine similarity scores. A very helpful feature implemented in GTPQUERY is the ability to use different
low-rank approximations without having to recompute the SVD. Since we store the components of the SVD
rather than the reassembled low-rank approximation, a user is able to choose the rank of the approximation
to be used for each query up to the number of singular values computed during the SVD computation by
GTP. If all of the singular values are stored, the user has the option of performing queries ranging from exact
matches (using all of the singular values) to extremely conceptual matches (using just a few singular values).
In the current implementation of QCS, all of the singular values are computed and stored for each document
collection. Note that for larger collections, though, the number of singular values computed may be limited
by the computational resources available.

The documents matching a query can be chosen by specifying either the number of documents to be
retrieved or a cutoff for the query score. In the current implementation of QCS, 100 documents are returned
in order to have a large enough subset of documents to guarantee good clustering and summarization output.
The potential downside to this is that, depending on the specific query, many of the retrieved documents may
have very low query scores. This may need to be adjusted based on the document set and/or distribution
of query scores.

2.3. Clustering Documents

In QCS, we use the information derived from the query processing phase to cluster documents into a
variable number of clusters, each representing a single topic. Throughout this section, we assume that the
querying module has identified a set of N documents for further processing.

Our clustering of the N documents is a partitioning into k disjoint subsets, π1, . . . , πk, based on cosine
similarity of the N document feature vectors, {d1, . . . , dN}. The coherence of the cluster πj can be defined
as

∑

di∈πj

dT
i cj , (3)

where di is assumed to be normalized (i.e, ‖di‖ = 1) and cj is the normalized centroid of cluster πj containing
nj documents:

cj =

1
nj

∑

di∈πj
di

‖ 1
nj

∑

di∈πj
di‖

. (4)

We want to choose the clusters πj to maximize the sum of the coherence functions. This is one of the classical
approaches to k-means clustering and can be shown to be equivalent to minimizing the radii of the clusters.

To perform the clustering in QCS, we currently use the spherical k-means algorithm (Dhillon and Modha,
2001) employing first variation and splitting (Dhillon et al., 2002). This is an iterative method for maximizing
the coherence functions of document feature vectors and includes efficient computation of feature vector
similarities (the main computational bottleneck in many implementations of k-means algorithms) and the
ability to choose a range for the number of clusters into which the feature vectors will be partitioned.
Comparisons of this clustering algorithm to the classical k-means algorithm on large document sets indicate
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significant decreases in computational time coupled with insignificant degradation in the quality of the
clusters (Dhillon et al., 2001).

Clustering can be a computational bottleneck unless a good initial guess is provided. In QCS, we use 5
initial (seed) clusters and allow the results to be partitioned into as many as N/10 final clusters. The seeding
of the initial clusters is based on the query scores (i.e., the cosine similarity scores) of the documents with
cluster i, (i = 1, . . . , 5), containing documents with scores satisfying

0.2(i − 1)(smax − smin) + smin < s ≤ 0.2(i)(smax − smin) + smin , (5)

where smax and smin are the maximum and minimum scores, respectively, of the documents returned from
the query module. This seeding has proven useful for the document collections used in QCS to date, but may
not work well for all sets of documents. The best use of the similarity scores in seeding the initial clusters
remains an open question.

The clustering of documents in QCS is performed using GMEANS v1.0 (Dhillon et al., 2002). Only slight
modifications to the original code were necessary to insure that the interface to the data in the vector space
model matched both the query and summarization modules. The GMEANS software includes several distance
measures; only spherical k-means has been tested extensively in QCS. The other distance measures are
Euclidean distance, Kullback-Leibler divergence, and diametric distance. More testing on the use of these
distance measures will help determine their usefulness in producing good clusters for use in summarization.

Once a set of clusters of documents has been determined, the list of documents in each cluster is then
passed to the summarization module.

2.4. Summarizing Documents and Clusters

The summarization module in QCS is based on the work of Conroy and O’Leary (2001) and its implemen-
tation from the DUC 2003 evaluation (Dunlavy et al., 2003b). The algorithm proceeds in two steps: trimming
sentences and then choosing the sentences to include in a summary. The sentence trimming algorithms are
the work of Schlesinger, first documented in (Dunlavy et al., 2003b).

2.4.1. Choice of Summary Sentences

The choice of sentences to include in the summary is done in two phases; first, single document extract
summaries are produced for each document in the cluster, and then sentences from these summaries are
considered for inclusion in the summary of the document cluster.

Single document summaries are produced using a hidden Markov model (HMM) (Baum et al., 1970;
Rabiner, 1989) to compute the probability that each sentence is a good summary sentence. The highest
probability sentences are chosen for the summary. The 13-state HMM shown in Figure 1, built to extract
six primary sentences and an arbitrary number of additional supporting sentences, is used to compute these
probabilities. Currently, this 13-state HMM and an additional 5-state HMM (3 primary sentence states
and 2 supporting sentence states) are used in QCS for different document collections. The ability to use a
different extraction model for each document collection allows for the application of QCS to a wide range
of document formats and genres.

The HMMs in QCS use features based upon “signature” and “subject” terms occurring in the sentences.
The signature terms are the terms that are more likely to occur in the document (or document set) than in
the corpus at large. To identify these terms, we use the log-likelihood statistic suggested by Dunning (1993)
and first used in summarization by Lin and Hovy (2002). The statistic is equivalent to a mutual information
statistic and is based on a 2-by-2 contingency table of counts for each term. The subject terms are those
signature terms that occur in sentences with stype = 0, e.g., headline and subject leading sentences.

The HMM features are
• log(nsig + 1), where nsig is the number of signature terms in the sentence,
• log(nsubj + 1), where nsubj is the number of subject terms in the sentence,
• the position of the sentence in the document, built into the state-structure of the HMM.
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Fig. 1. The state space of the 13-state HMM used in the QCS summarizer.

The two term-based features are normalized component-wise to have mean zero and variance one. In addition,
the features for sentences with stype = 0 or −1 are coerced to be −1, which forces these sentences to have
an extremely low probability of being selected as summary sentences.

Multidocument summaries are created for each cluster by choosing a subset of the sentences identified
by the HMM. If we want a summary containing w words, we consider the highest probability sentences
from documents in that cluster, cutting off when the number of words exceeds 2w. We form a term-sentence
matrix, B, similar in structure to the term-document matrix A used in the querying and clustering modules,
containing a column for each of these sentences. The columns of B are scaled so that the Euclidean norm
equals the probability assigned to the sentence by the HMM.

In order to remove redundant sentences, a pivoted QR algorithm is applied to the scaled term-sentence
matrix. We first choose the sentence whose corresponding column in B has maximum norm. Then, within
the matrix B, we subtract from each remaining column the component in the direction of the column for
this chosen sentence. This process is iterated until the number of words in the collection of chosen sentences
exceeds the desired length w. For more details, see Conroy and O’Leary (2001).

2.4.2. Sentence Trimming

The HMM tends to select longer sentences due to the features currently used. Because of this, for a 100-
word summary, the pivoted QR algorithm typically selects 2 or 3 sentences from all those first selected by
the HMM. We hypothesized that if we could shorten sentences, by removing less important information from
them, we could increase the number of sentences in a summary and, therefore, add additional information
to the summary.

As an inexpensive alternative to full parsing and comprehension, we identified trimming patterns using
“shallow parsing” techniques, keying off lexical cues based on part-of-speech (POS) tags in our preprocessed
data. The following eliminations were considered:
– lead adverbs and conjunctions;
– gerund phrases;
– restricted relative-clause appositives;
– intra-sentential attribution.
We define a token to be a white-space delimited word with all punctuation removed and use the simple
heuristic that if the number of tokens to be deleted is greater than or equal to the number of tokens to be
retained, the elimination is not performed.

Lead adverbs and conjunctions include POS-tagged adverbs that are comma-delimited from the remainder
of the sentence along with conjunctions such as “and” and “but”. They do not tend to add substantial
information and often hinder the flow of the summary when the preceding sentence of the document was
not also selected.

Gerund phrases often comment on, rather than advance, a narration and therefore tend to be incidental.
Restricted relative-clause appositives usually provide background information which could be eliminated.
While attributions can be informative, we decided that they could be sacrificed in order to include other,
hopefully more important, information in the summary.

An example of each of the three phrase/clause eliminations is given in Figure 2.4.2.
Our DUC 2003 submission, which used the same summarizer as in QCS, used these phrase/clause elim-

inations in a post-processing mode. Sentence selection was first made by the HMM and QR algorithms.
These sentences were then trimmed and one or more sentences were added if space was made available.
Based on the DUC 2003 results, we hypothesized that we would see added benefit if we applied these trans-
formations as a pre-processing step applied to all sentences in the documents, before summary sentence
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a. Example of a gerund phrase to be removed: More than 800 lives were lost when the 21,794 tonne ferry, sailing

from the Estonian capital Tallinn to Stockholm, sank within minutes early yesterday morning in the Baltic Sea 40 km south
west of the Finnish island of Uto.

b. Example of a restricted relative-clause appositive to be removed: The Menendez family lived in the Princeton

Area until 1986, when they moved to California.

c. Example of an attribution to be removed: The federal Government’s highway safety watchdog said Wednesday that
the Ford Bronco II appears to be involved in more fatal roll-over accidents than other vehicles in its class and that it will

seek to determine if the vehicle itself contributes to the accidents.

Fig. 2. Examples of phrase/clause eliminations in the summarization module of QCS.

selection was performed. This was tested in DUC 2004 and results were superior to the submission using
the post-processing version. See Conroy et al. (2004) for details.

We also experimented with removing two types of sentences. The first type of sentence is one that begins
with an imperative. This type is not currently removed since a lead imperative so rarely occurred it was not
worth looking for it. The second type of sentence is one containing a personal pronoun at or near the start.
While these sentences negatively impact a summary’s readability, eliminating them adversely affected the
quality of the summary’s information content. We are working on a solution to the anaphora problem to
resolve this issue.

2.5. The QCS Client-Server Architecture

A screen shot of the QCS user interface is presented in Figure 3. There are three main frames in the
interface: the query form, the navigation bar, and the results frame.

The query form contains an input field for entering a query and a field for selecting the document set
on which to perform the query. Currently, the document sets from the 2002–2004 DUC evaluations and a
Medline document set are available for online use.

The navigation bar contains links to the documents and is organized to reflect the output from the
querying, clustering and summarization modules. For each cluster, query scores and document names are
given, with hyperlinks to the text of the documents in the “Q” subsection. In the “C” subsection, links are
given to the documents containing the sentences used in the multidocument summary, along with the index
of the sentence within the original document. Lastly, in the “S” subsection, a link to the multidocument
summary for the cluster is presented.

The results frame displays information requested through the navigation bar. The default output is mul-
tidocument summaries (also chosen using the “S” links). Other options include the text of individual doc-
uments (chosen using the “Q” links) or individual documents with summary sentences highlighted (chosen
using the “C” links).

Note that all instances of the query scores presented in the QCS user interface are scaled to the interval
[0, 100] for readability.

The client in QCS consists of dynamically-created HTML pages. Using this approach makes the QCS
system as portable as possible from the perspective of its users. The dynamic HTML pages are generated
by Java servlets that are deployed via an Apache Tomcat Java Server (v.4.1.12). The interface between the
QCS server (consisting of all of the C/C++ code) is handled using the Java Native Interface (JNI) in QCS.
For QCS, this allows the computationally intensive code to be developed in C and C++ code that can be
highly optimized on a given hardware platform, while still allowing for the greatest amount of portability
for the user interface.

The current implementation of QCS can be found at http://stiefel.cs.umd.edu:8080/qcs/.

3. Example of the QCS System

We present here an example of the entire QCS system from the standpoint of the user. The example uses
the query hurricane earthquake in finding documents in the DUC 2002 document collection. The DUC 2002
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Fig. 3. The QCS user interface.

collection consists of 567 documents and the QCS preprocessing modules identified 7767 unique terms across
the collection.

Table 4 shows the highest query similarity scores along with the first “subject” sentence (i.e., first sentence
with stype = 0) from each document. In this example, a rank-50 approximation of A (i.e., p = 50) was used in
computing the similarity scores. Clearly, QCS has found several documents about hurricanes. Furthermore,
there are no clear examples of documents relating to earthquakes in these documents. However, some of the
subject sentences are rather uninformative, and it would be difficult to classify the documents on the basis
of these alone. Given just this kind of information (as is typically the case with query tools), a user would
have many documents to read and no idea whether or not the high-ranking documents contained redundant
information.

The results of clustering the 100 top scoring documents returned by the querying module using an upper
limit of 10 clusters are presented in Table 5. The clustering algorithm split the original 5 seed clusters into
10 clusters, and the table shows the number of documents and the mean query score for each cluster. For
this example, a majority of the documents are in the 5 clusters with the highest mean query scores; this is
representative of most of our tests and may be biased by our initial seeding scheme. However, it is unclear
if and how this behavior would change if a different initial cluster seeding is used.

Table 6 presents the subject sentences of the top 3 scoring documents in each of the top 3 clusters,
illustrating the contents of each cluster. It is clear from the subject lines that the documents in the first
cluster relate to Hurricane Gilbert and those in the third cluster relate to insurance claims associated with
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Table 4
Query results in the hurricane earthquake example.

Score Subject Sentence

90 Hurricane Latest in String of Disasters to Hit Historic City

85 Hurricane Forecasters Carry on Amid Chaos

85 Forecasting Aided by Supercomputers, but Still an Uncertain Science

84 Killer Storm Hits South Carolina Coast

83 Scientists: Warming Trends Could Mean Fiercer Hurricanes

82 City Sends Money to Charleston in Repayment of 211-year-old Debt

82 150,000 Take Off as Hugo Takes Aim at Ga., Carolina

82 Loss of Life Low because People Were Prepared

81 Hurricane Gilbert Heading for Jamaica with 100 MPH Winds

80 Gilbert: Third Force 5 Hurricane This Century

Table 5
Clustering results in the hurricane earthquake example.

Initial (Seed) Clusters Final Clusters

Cluster Documents Mean Query Score Documents Mean Query Score

1 26 76 19 72

2 11 62 15 70

3 25 44 11 51

4 20 31 15 41

5 18 13 17 34

6 6 20

7 8 17

8 3 17

9 3 13

10 3 08

hurricanes. However, from the subject lines alone, is is difficult to determine the focus of the documents
in the second cluster; they could relate to forecasting or a specific hurricane which hit a historic city or
something else.

Figure 3 shows the multidocument summaries for the top 5 scoring clusters. We see that the subject lines
in Table 6 for the first and third clusters were indeed indicative of the topics of those clusters, as further
illustrated by the summaries. From the summary for the second cluster, we see that the documents in that
cluster focus on Hurricane Hugo. Note that the name Hugo did not appear in the subject lines of the top
query results (Table 4) or top cluster results (Table 6), and only is indicated as the topic of the second
cluster through the multidocument summary. Moreover, the name Hugo only appears in the subject line of
the document in the second cluster which has the lowest query score (47).

Summaries for the top 5 clusters are shown in Figure 3 to illustrate the ease of finding information about
earthquakes even though most of the top scoring results focused on hurricanes. In fact, the highest scoring
document related to earthquakes in this example is found in position 39 in the query results with a score of
51. The potential savings to the user in using QCS in this example is that only 3 summaries would need to
be read before finding information about earthquakes (instead of 38 subject lines or even full documents).
Furthermore, the documents related to earthquakes are clustered to differentiate between those related to
an earthquake in California (cluster 4) and those related to one in Iran (cluster 5).

The flow of the summaries is representative of the output of QCS for the queries tested. They do not read
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Table 6
Top scoring documents (using query scores) from the top scoring clusters (using mean query scores) in the hurricane earthquake
example.

Score Subject Sentence

Cluster 1

83 Hurricane Gilbert Heading for Jamaica With 100 MPH Winds

80 Gilbert: Third Force 5 Hurricane This Century

80 Hurricane Hits Jamaica With 115 mph Winds; Communications Disrupted

Cluster 2

83 Forecasting Aided By Supercomputers, But Still An Uncertain Science

83 Hurricane Latest in String of Disasters to Hit Historic City

79 Hurricane Forecasters Carry On Amid Chaos

Cluster 3

67 Hurricane batters southern US but lets insurers off lightly

67 US insurers face heaviest hurricane damage claims

66 UK Company News: GA says hurricane claims could reach ’up to Dollars 40m’

like human-generated summaries, but the hope is that they are sufficient to inform a user of the content of
the documents contained in each cluster. Note that in some cases, the summaries can be misleading, most
notably for clusters containing documents covering two or more related but distinct topics.

This example illustrates the usefulness of providing document clusters and cluster summaries in presenting
query results to a user. We undertake a systematic evaluation of the QCS system in the next section.

4. Experiments

In this section, we describe the results of several sets of experiments performed to test QCS on various
document collections. We first present the results of timing experiments involving the processing of document
collections, setting up and running QCS on collections of various sizes, and partial parallel implementations
of the QCS system. We then describe our framework for evaluating the performance of QCS and present the
results of several tests performed within this framework using data from the 2002–2004 DUC evaluations.

Tests were performed on a Sun Ultra60 with a 450 MHz processor and 512 Mb of RAM running Solaris 8.

4.1. Timing Tests

The first set of experiments focused on the computational time required for document preprocessing and
calls to QCS using the document collections from the 2002–2004 DUC evaluations and a subset of Medline
documents focusing on gastrointestinal stromal tumors.

The timing results, in minutes, for the offline preprocessing of the documents are presented in Table 7.
Note that the data for the DUC 2003 evaluation is split into three sets of documents, one for each of the
summarization tasks (2, 3, and 4) from that year where the goal was to generate 100-word summaries.
Also, the DUC 2004 document collection that was modified using the natural language processing (NLP)
techniques described in Section 2.4 is denoted as DUC04-PRE. The times for GTP preprocessing (document
parsing, term indexing, and SVD computation) appear to increase linearly with respect to the document
collection size, but it is not as clear how well the NLP methods (part-of-speech and sentence tagging) scale
with larger collections. Because the main computational bottleneck in the QCS document preprocessing
involves the NLP methods, we plan to study the scalability of these methods with the goal of more efficient
processing of very large document collections, specifically in the context of massively parallel computing.
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Cluster 1

Gilbert, an “extremely dangerous hurricane” and one of the strongest storms in history, roared toward Mexico’s Yucatan
Peninsula Tuesday with 175 mph winds after battering the Dominican Republic, Jamaica and the tiny Cayman Islands.
At midnight EDT Gilbert was centered near latitude 21.5 north, longitude 90.2 west and approaching the north coast of
Yucatan, about 60 miles east-northeast of the provincial capital, Merida, the National Hurricane Center in Coral Gables,
Fla., said. John Hope, the network’s hurricane specialist and a former forecaster with the National Hurricane Center in
Miami, Fla., said the drought in the Southeast might be lessened or ended in the next few months by a heavier than normal
hurricane season.

Cluster 2

Hurricane Hugo advanced faster and with renewed fury today on Georgia and South Carolina as 150,000 coastal residents
grabbed what they could carry and fled inland on jammed highways. Supercomputers, satellites and the expertise of several
hurricane forecasters predicted the destructive path Hurricane Hugo would follow, giving people plenty of time to flee the
South Carolina coast. The storm, which caused billions in damage, claimed 17 lives in South Carolina, and only two were in
the Charleston area, which bore the brunt of Hugo’s 135 mph winds. While Hurricane Hugo’s 135 mph wind roared outside,
Mayor Joseph P. Riley Jr. watched the fury it vented on his beloved, 300-year-old city.

Cluster 3

Hurricane Hugo will go down in the record books as the costliest storm insurers have faced so far, but it won’t cause
property-casualty premium rates to rise immediately, analysts and company officials say. Most San Francisco-area home-
owners may have to pay for damage from Tuesday’s earthquake out of their own pockets, while insurance companies may
reap long-term benefits from higher rates, industry spokesmen and analysts said Wednesday. Although the damage from the
hurricane’s landfall in Florida on Monday was much greater than initially estimated mated, insurers’ losses there are likely
to total less than Dollars 1bn, well below earlier expectations, a senior member of Lloyd’s insurance market said yesterday.

Cluster 4

A major earthquake rocked northern California Tuesday evening, collapsing part of the San Francisco Bay Bridge and
shaking Candlestick Park and buildings up to 95 miles away. Tuesday’s earthquake, the strongest on the San Andreas fault
since the San Francisco quake on April 18, 1906, came in a place that had been identified by scientists just last year as the
most likely spot for a major jolt in Northern California within the next 30 years. A violent earthquake rocked Northern
California during Tuesday evening’s rush hour, caving in a section of the San Francisco Bay Bridge, terrifying World Series
fans in Candlestick Park and shaking buildings as far as 200 miles away.

Cluster 5

Iran said today that it would welcome relief offered by its bitter enemy, the United States, to help victims of the earthquake
that has killed as many as 35,000 people, the State Department said in Washington. State Department officials said the
government gave $300,000 worth of supplies to the American Red Cross for shipment to Iran – including 1,000 hard hats,
1,000 pairs of leather gloves, 10,000 face masks, 2,940 wool blankets and about 500 tents. Orange County’s Iranian community
launched an ambitious effort Sunday to collect half a million dollars in money, medicine, tents, blankets and sleeping bags
for hundreds of thousands of injured and homeless people in earthquake-ravaged Iran.

Fig. 4. Multidocument summaries (∼100 words) for the top 5 scoring clusters in the hurricane earthquake example.

Table 8 presents the run time of QCS using several different queries. The query terms were chosen such
that at least 100 documents in the corresponding collection contained at least one of the terms and that
a range of the number of clusters were produced across all document collections. The collection name, the
query term(s) used, and the times for setting up the problem, and the three phases of processing (Q, C, and
S) are shown. Note that these times are in seconds, not minutes as in Table 7, and represent the amount of
time a user of QCS waits for results once a query has been submitted.

The results indicate that the major portion of the computation performed in QCS can be performed
offline so the user experiences response times in seconds rather than minutes. Note that the most recently
developed and least optimized piece of code in QCS is the summarization module, and this accounts for
the bulk of user time. Furthermore, the problem setup code and the implementations of the querying and
clustering algorithms scale fairly well with respect to the number of clusters generated. This indicates a clear
plan for the first steps in attempting speedups in the overall QCS system.

A parallel version of GTP, PGTP, has also been incorporated into QCS. PGTP uses the Message Passing
Interface (MPI) library specification for implementing the code in parallel. We used the MPICH implemen-
tation of MPI. The part of GTP that can be efficiently performed in parallel is the computation of the SVD
of the term-document matrix (Berry and Martin, 2000).

Timing results for PGTP using 14 Sun Ultra10 workstations are presented in Figure 5. The specific times
presented in the figure are the real, or wall clock, time and the user, or computational, time required to
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Table 7
Timing results for preprocessing steps.

Matrix Time (minutes)

Collection Size (Mb) Docs Terms Nonzeros GTP† NLP‡

DUC02 3.77 567 19464 119791 2:27 43:17

DUC03-2 1.99 298 11907 63751 1:25 23:01

DUC03-3 1.94 326 13426 62093 1:29 19:59

DUC03-4 9.92 1105 38037 277975 5:23 55:08

DUC04 2.83 500 16037 106854 2:04 25:20

DUC04-PRE 2.73 500 15780 102976 1:56 25:20

MEDLINE 2.42 738 12039 74596 1:39 26:15

†Document parsing, term indexing, and SVD computation using GTP.

‡Part-of-speech/sentence tagging using LT POS and stype tagging using Perl.

Table 8
Average timing results for 10 runs of QCS.

Time (seconds)

Collection Query Clusters† Setup Q C S

DUC02 floods 3 0.19 0.05 9.68 12.88

DUC03-2 president 5 0.22 0.04 9.14 22.81

DUC03-3 government 2 0.22 0.05 8.88 10.26

DUC03-4 technology 10 0.21 0.10 17.55 98.38

DUC04 party 6 0.22 0.06 7.72 39.73

DUC04-PRE party 6 0.21 0.06 8.68 36.73

MEDLINE cajal kit 10 0.24 0.08 7.90 21.72

†Number of clusters with mean score above 20.
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Fig. 5. Timing of PGTP indexing the DUC 2002 documents (14 workstations).

compute the SVD in parallel for the term-document matrix produced from the DUC document set. From
the figure, we can see that there is definitely a speedup when using more than one processor. Note that
there is an unexpected four -fold increase in speedup between using 1 and 2 processors; in this experiment
the data and associated temporary storage required for computing the SVD of the term-document matrix
exceeded the physical memory available on a single processor but fit on 2 processors. The best speedup
factor in real time over using a single processor is more than 6 (4 processors), and for user time it is more
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than 25 (4 processors). However, for this small set of documents, we can see that there is essentially no
difference in user time when using more than 3–4 processors. Results presented in Berry and Martin (2000)
show a similar leveling off behavior for PGTP run on several larger test sets (more than 130,000 documents
and 270,000 terms).

4.2. Experiments with QCS on Small Topic-Related Document Collections

The second set of experiments focused on the interplay between the querying, clustering and summa-
rization modules in QCS. We evaluated the system measuring the effect of replacing a machine generated
component with the “gold-standard” equivalent.

We evaluated both single and multi-document summaries. In each case we compared machine summaries
with human model summaries using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) v1.5.5
summarization evaluation tool (Lin, 2004). We report here the ROUGE-1, ROUGE-2, and ROUGE-SU4 recall
scores, as these are the scores reported in several of the most recent DUC evaluations (Dang, 2005). These
scores range from 0 to 1 and reflect the similarity—with higher score reflecting more similarity—between two
summaries. The ROUGE-1 and ROUGE-2 scores are based on the overlap of unigrams and bigrams (using words
as tokens), respectively, between automatically-generated summaries and human-generated summaries. 1

The ROUGE-SU4 score is also based on the overlap of bigrams between summaries, but allows for gaps to occur
between tokens (skip-bigram), with a maximum gap length of 4 tokens, and includes unigram co-occurrence
statistics as well. Token stemming is performed using the Porter stemmer algorithm, and four-way cross-
validation was performed for summaries generated using QCS and those using the summarization module
independently.

4.2.1. Experiments with Single Document Summaries

We designed an experiment to measure the effects of the clustering algorithm on single-document sum-
maries. Recall that the summarization component uses signature terms—terms identified as representative
of the document—and the performance of the algorithm is greatly influenced by the quality of the signature
terms. The experiment was to compare the quality of the summary when signature terms were taken from
“ground-truth” clusters versus when the clustering information is withheld and the documents are treated
in isolation.

For this test, we turned to the DUC02 data sets. These data contain 567 documents which are clustered
into 59 topics. There are 1112 human model summaries, with approximately 2 summaries per document. In
Table 9, we see that indeed the ROUGE-1, ROUGE-2, and ROUGE-SU4 scores are significantly better when the
summarization algorithm is given clusters.

Table 9
Single Document ROUGE Measures with and without Clusters

Clusters Given Method Mean 95% CI Lower 95% CI Upper

YES ROUGE-1 0.44865 0.44045 0.45665

NO ROUGE-1 0.43335 0.42498 0.44132

YES ROUGE-2 0.18766 0.17891 0.19688

NO ROUGE-2 0.17499 0.16615 0.18352

YES ROUGE-SU4 0.21119 0.20353 0.21911

NO ROUGE-SU4 0.20000 0.19210 0.20749

1 The specific ROUGE parameters used to produce the ROUGE-2 and ROUGE-SU4 scores are as follows: ROUGE-1.5.5.pl -n 2 -m -2

4 -u -c 95 -r 1000 -f A -p 0.5 -t 0 -a which generates recall, precision, and F-measure average scores (averaged across
sentences in each summary) along with 95% confidence intervals for each summary.
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4.2.2. Experiments with Multidocument Summaries

The goal of these experiments was to determine whether the best machine-generated summary produced
for a given DUC cluster is one using all of the documents for that cluster or a subset of those documents.
In the cases where a better summary could be produced with fewer documents, we also ran experiments to
determine if QCS is able to generate such summaries by incorporating document querying and clustering
into the summarization process.

In these experiments, a multidocument summary was produced using the summarization module of QCS
for each possible subset of two or more documents from each cluster. Since each DUC collection contained
10 documents, there were a total of 1013 subsets generated for each. Next, several queries for each cluster
were generated from the cluster topic descriptions included as part of the DUC evaluations and used to run
QCS. Finally, the output of QCS was compared to the human summaries and machine-generated summaries
generated by the variant of the summarization module in QCS for each year of DUC.

We used the topic descriptions for each cluster provided in the DUC 2003, Task 2 description to generate
queries to be used in QCS. Three queries were generated for each cluster using the words from the 1) topic
headline; 2) topic headline and seminal event description; and 3) topic headline, seminal event description,
and topic explication. Our intent in using these different queries was to simulate a range of queries containing
different amounts of information—from an ambiguous query with a few key words, query 1, to a query
reflecting all known information on a particular subject of interest, query 3.

We present the results of the experiments for the d30003t and d31033t clusters. The topic of cluster
d30003t is the arrest and trial of Chilean dictator General Augusto Pinochet in 1998, and cluster d31033t
contains documents about the anti-trust case in the late 1990s against the Microsoft Corporation. To study
the effects of cluster size on the quality of summaries produced by QCS, we ran QCS using each of the three
queries and allowing for up to as many as k = 2, . . . , 9 subclusters to be formed for each of the DUC clusters.
Note that with such small document collections (10 documents for each cluster), the clustering module failed
in several instances where too many singleton clusters were formed (i.e., when k > 5 maximum number of
clusters were allowed).
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Fig. 6. ROUGE-1 recall scores plotted with 95% confidence intervals (lines) for the human (×), summarization module (◦) and
QCS (•) summaries for clusters d30003t and d31033t. The scores appear in descending order of average score from left to right.

16



 D C E 541 549 S16 B 33 327 3 885 311 4  
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 A C B 477 222 S66 59 F 91 19 S67 989 S65 988  
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 A C 478 B 28 96 222 S66 91 F 375 526 19 S67 S65  
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) d30003t, DUC03-2 (c) d30003t, DUC04 (e) d30003t, DUC04-PRE

 E G D 379 251 504 S16 F 892 900 43 106 27 19  
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 H E D F S65 725 186 S67 S66 701 19 279 2  
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 H E D F 725 S65 186 191 701 59 S67 S66 279 19 2  
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(d) d31033t, DUC03-2 (e) d31033t, DUC04 (f) d31033t, DUC04-PRE

Fig. 7. ROUGE-2 recall scores plotted with 95% confidence intervals (lines) for the human (×), summarization module (◦) and
QCS (•) summaries for clusters d30003t and d31033t. The scores appear in descending order of average score from left to right.
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Fig. 8. ROUGE-SU4 recall scores plotted with 95% confidence intervals (lines) for the human (×), summarization module (◦) and
QCS (•) summaries for clusters d30003t and d31033t. The scores appear in descending order of average score from left to right.
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Figures 6–8 present the ROUGE-1, ROUGE-2 and ROUGE-SU4 recall scores for the human (×), summarization
module (◦) and QCS (•) summaries (over all runs where k = 2, . . . , 9 subclusters were formed). The scores
appear in descending order of average score from left to right, and include 95% confidence intervals for the
machine-generated systems. Note that there are no confidence intervals for the human summaries since each
human summary is scored once per cluster against all other human summaries. To remain consistent with
the DUC evaluations, the summary labels appearing along the horizontal axes in the figures correspond
to the summary labels used in the DUC evaluations (A–J for the humans and S# for the system number
assigned to the variant of the summarization module submitted to DUC.) These results suggest that an
improvement in summary quality can be made using QCS in place of the summarization module alone. In
all but one case— cluster d31033t using the DUC04 collection—at least one summary returned by QCS has
a higher average score than those of the summaries produced using the summarization module. However,
the results suggest only marginal improvement, as illustrated in the overlap of the confidence intervals for
the scores.

Figures 9– 11 present the same ROUGE scores as a function of the number of clusters formed in the clustering
module of QCS. The dotted lines denote the score(s) of the summaries generated by the different variants of
the summarization module and submitted to the DUC evaluations. These results suggest that the number of
clusters formed in QCS affects the quality of the summary produced. Although the improved QCS summaries
are not generated using the same number of clusters across all of the experiments, the appearance of trends
in the soring data between summary quality and the number (and thus size) of QCS clusters suggests a
potential relationship that may be leveraged using QCS.
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Fig. 9. ROUGE-1 recall scores for the QCS summaries for clusters d30003t and d31033t as a function of the number of clusters

formed (k). The dotted lines represent the corresponding scores for the summarization module summaries.

We conclude from this experiment that the clustering of documents used for multidocument summarization
can greatly affect the quality of the summary produced. Specifically, determining subclusters (i.e., subtopic
detection) is critical for accurately reflecting the information conveyed by a set of documents through
automatically generated summaries. Furthermore, we have demonstrated that the use of clustering as a
preprocessing step used before performing automatic summarization can help improve summaries generated.
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Fig. 10. ROUGE-2 recall scores for the QCS summaries for clusters d30003t and d31033t as a function of the number of clusters
formed (k). The dotted lines represent the corresponding scores for the summarization module summaries.

4.3. Experiments with QCS on a Larger Diverse Document Collection

In the final set of experiments, we focused on the effects of querying and clustering on summarization,
both independently and in the full QCS system, on a larger collection of documents covering a wide variety
of topics. The collection consisted of documents from all clusters in the DUC 2003 Task 4 evaluation data
where 1) a topic description was provided, 2) a summary generated using the summarization module was
submitted to the DUC 2003 Task 4 evaluation, and 3) four human-generated summaries were provided.
There were 28 clusters which met this criteria, resulting in a collection of 625 files.

For each of the 28 clusters, we generated several summaries using four different methods, as well as the
method we submitted to the DUC 2003 evaluation. The first method is the full QCS system. As in the
experiments in the previous section, queries were derived from each topic description. The topic descriptions
for the DUC03-4 data included a title, two short descriptions, and a topic narrative. Four queries were
created for each topic description using 1) title only, 2) descriptions only, 3) title and descriptions, and 4)
all topic information. Using the default QCS setup, up to 10 multidocument summaries were generated per
query.

The second method, denoted QL, combines the QCS query module and lead sentence extraction to generate
one multidocument summary per query. Given a query, a subset of documents is retrieved and ordered by
query score. A multidocument summary is then produced using the lead sentence with stype = 1 from
each of the top scoring documents until the total number of words in these sentences exceeds 100. As
in the experiments in the previous section, four queries derived from the topic descriptions were used to
retrieve a subset of the 625 documents. In many of the DUC evaluations, similar lead-sentence summaries
have been used as baselines, representing a summarization approach requiring minimal text and/or natural
language processing. However, since the DUC evaluation data consists of newswire documents, such baseline
summaries have performed fairly well compared to many more sophisticated approaches in several of the
DUC evaluations (Over and Yen, 2004; Dang, 2005).
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Fig. 11. ROUGE-SU4 recall scores for the QCS summaries for clusters d30003t and d31033t as a function of the number of clusters
formed (k). The dotted lines represent the corresponding scores for the summarization module summaries.

The third method, denoted QS, is similar to the QL method, but uses the QCS summarization module
instead of lead-sentence extraction to generate a summary. Again, given a query, a subset of documents is
retrieved and ordered by query score. The top scoring document and those documents with query scores
within 30% of the top score are collected into a cluster and a single multidocument summary is generated
for this cluster using the QCS summarization module.

The final method, denoted CS, combines the clustering and summarization modules from QCS to generate
several multidocument summaries. Given a cluster of n documents, the clustering module generates a max-
imum of k = min{10, n/2} subclusters starting with 2 randomly seeded initial subclusters. Multidocument
summaries for each of the resulting k subclusters are then generated using the QCS summarization module.

Figures 12–14 present the ROUGE-1, ROUGE-2, and ROUGE-SU4 recall scores for all of these systems for
each of the 28 DUC clusters. For QL (�) and QS (+), four summaries associated with each of the DUC
clusters were produced (one for each query); for CS (♦), an average of 9.14 summaries were produced per
DUC cluster (due to the varying number of subclusters generated); and for QCS (•), an average of 33.5
summaries associated with each DUC cluster generated (using the four summaries and generating up to 10
clusters). The results presented in Figures 12–14 only show the top scoring summary for each of the QCS,
QL, QS, and CS methods.

Table 10 presents the results of pairwise comparisons of the top scoring summaries generated by the
five methods. The entry in the row labeled QCS and the column labeled S, for instance, indicates that
S had a better ROUGE-2 score on 57% of the 28 instances. There is much variability in scores across the
different experiments, as shown in Figures 12–14. However, the pairwise comparisons of methods using
ROUGE-1, ROUGE-2, and ROUGE-SU4 suggests the following overall performance ordering: S, CS, QCS, QS,
and QL. Although QCS is not the top-performing method throughout all of the experiments, we note that
it outperforms S and CS at least 25% of the time using any of the ROUGE scores and it outperforms S 43% of
the time evaluated with the ROUGE-2 score. Furthermore, both S and CS had human intervention to obtain
the relevant documents. Comparable results were obtained using the ROUGE-1 and ROUGE-SU4 scores.

We conclude from these experiments that QCS preforms well in producing summaries for automatically
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Fig. 12. ROUGE-1 recall scores for DUC03 Task 4 data for the human (×) and summarization module (◦) summaries, along with
the top scoring QCS (•), QL (�), QS (+), and CS (♦) summaries.
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Fig. 13. ROUGE-2 recall scores for DUC03 Task 4 data for the human (×) and summarization module (◦) summaries, along with
the top scoring QCS (•), QL (�), QS (+), and CS (♦) summaries.

generated clusters of documents, rivaling summaries generated using manual processing of data. The benefit
of using QCS over such methods is that it is a fully automatic system for document retrieval, organization,
and summarization.

5. Conclusions

QCS is a tool for document retrieval that presents results in a format so that a user can quickly identify a
set of documents of interest. The results include a multidocument summary of each cluster of documents, a
summary of each individual document, a pointer to each document, and pointers to documents from which
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Fig. 14. ROUGE-SU4 recall scores for DUC03 Task 4 data for the human (×) and summarization module (◦) summaries, along
with the top scoring QCS (•), QL (�), QS (+), and CS (♦) summaries.

Table 10
Comparison of ROUGE-2 scores of top scoring summaries for DUC03-4 data. The entry in the table is the percent of times that
the system corresponding to the column outperformed the system corresponding to the row.

S CS QCS QS QL

S – 46 43 32 14

CS 54 – 32 21 11

QCS 57 68 – 32 21

QS 68 79 68 – 32

QL 86 89 79 68 –

the multidocument extract summary was derived. Results of using QCS on the DUC document set illustrate
the usefulness of this system; in particular, we provide evidence of the value of clustering as a tool for
increasing the quality of the summaries.

The QCS system has been developed as a completely modular tool, enabling new methods to be integrated
into the system as improvements are made in the areas of query, clustering, and summarizing documents.
It has been developed as a client-server application in which the client can be run from any platform that
can process HTML documents, which currently includes most major computing platforms.
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